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Abstract

We construct the d-regular graph with the maximum number of k-
cycles for k = 5,6.

Using a Mobius inversion relation between graph homomorphism num-
bers and injective homomorphism numbers, we reframe the problem as a
continuous optimization problem on the eigenvalues of G' by leveraging
the fact that the number of closed walks of length k is tr(A").

For k = 5 and d > 3, we show G is a collection of disjoint K441 graphs.
For d = 3, disjoint Petersen graphs emerge. For k£ = 6 and d large enough,
G consists of copies of Kg 4.

Additionally, we introduce and give formulas for non-backtracking ho-
momorphism numbers and backtracking homomorphism numbers, respec-
tively. Moreover, we find the d-regular graph on n vertices with the most
non-backtracking closed walks of length k by considering an optimization
problem on the non-backtracking spectrum of G. We also solve the same
problem, but for backtracking closed walks.

We conjecture that for odd & and sufficiently large d, the optimal G is
a collection of K41, while for even k with sufficiently large d, the optimal
G consists of Kg 4.

1 Introduction

Let G = (V, E) be a simple d-regular graph on n vertices. For convenience, we
will assume that n is nice. For example, always a multiple of d + 1. This is not
a big assumption as for large n, we will get many copies of the optimal graph
and a vanishingly small remainder component.

The main problem that is tackled in this paper is that of finding the d-regular
graph on n vertices with the most k-cycles for any d,n,k € N.

The rest of this paper is structured as follows: the rest of Section 1 presents
our main results, gives a proof overview, and discusses recent and relevant re-
search developments. Section 2 gives proof of the main problem for £k = 5
and k = 6. Then, Section 3, introduces non-backtracking and backtracking
homomorphism numbers and relates them to homomorphism numbers and in-
jective homomorphim numbers. We also find the graph with the most closed
non-backtracking (and backtracking) walks of length k.



1.1 Results

Theorems 1.1.1 and1.1.2 solve our main problem for the cases of 5-cycles and
6-cycles.

Theorem 1.1.1. Let d > 3 and n = ¢(d+ 1), the d-regular graph on n vertices
with the most 5-cycles is ¢ copies of Kg41.

Theorem 1.1.2. Letd > 5 and n = 2cd, the d-regular graph on n vertices with
the most 5-cycles is ¢ copies of Kq 4.

To attempt solving for the general case, we introduce the notion of a non-
backtracking homomorphism in Section 3. In [6], hom(H, G) and inj(H, G) are
introduced to denote the number of (injective) homomorphisms between H and
G. We denote the number of non-backtracking homomorphisms, respectively
backtracking homomorphisms, from H to G as nob(H,G) and bac(H, G), re-
spectively. We show the following relations.

Theorem 1.1.3.
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where @ ranges over all partitions of V' so that each part is an independent set
with no common neighbors.

We use this to show general theorems for closed non-backtracking walks and
closed backtracking walks.

Theorem 1.1.4. Let k be odd and n = ¢(d + 1). Then, the d-reqular graph on
n vertices with the most non-backtracking closed walks of length k is ¢ copies of
Ky

If k is even and n = 2cd, then the d-regular graph on n vertices is ¢ copies
Of Kd7d-

Lemma 1.1.5. Let n = c¢(d+ 1) and k be odd. Then, the d-reqular graph on n
vertices with the most closed backtracking walks of length k is ¢ copies of Kqi1.

Similarly, if n = 2cd and k is even, then the optimal graph is ¢ copies of
Kd,d-

1.2 Proof Overview

Let hom(H, G) denote the number of homomorphisms from H to G. Similarly,
let inj(H,G) be the number of injective homomorphisms from H to G. In
the language of homomorphsim numbers, our task is to find the maximizer of
maxg inj(C, G). In [6], Lovasz showed the following relation between these two
numbers.

Proposition 1.2.1.

inj(H,G) =Y _ pphom(H/P,G),
P



where P ranges over all partitions of V(H) and

pp = (1" @] (8] -,
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where |P| is the number of classes in P and S are the classes in P. [0]

We use this and the fact that

n
hom(Cy, G) = kltr(A¥) = k1Y~ AF
i=1
to get a continuous optimization problem on the spectrum of the graph.
This method is used in 1.1.1, 1.1.2, 1.1.4, and 1.1.5. it is remarkable that the
solutions to these optimization problems give eigenvalues of graphs, which is
not a priori the case.
For 1.1.4, we use the non-backtracking spectrum, which is introduced in [3].
We use an analogous version of the fact that the number of closed walks of
length k is tr(A*).

Proposition 1.2.2. Let G be a d-reqular graph. Then, the number of closed
non-backtracking walks of length k is equal to
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We use this to solve a similar type of constrained optimization problem to get
1.1.4. For backtracking homomorphisms, we notice that backtracking homomor-
phisms on a cycle are homomorphisms on smaller cycles with antennas. The size
and number of antennas of this graph depends on the number of backtrackings
and how many of them are consecutive.

1.3 Discussion

It was showed in [5] that copies of K41 gives the optimal amount of triangles.
They additionally proved that as n — oo, for any € > 0, any graph with an €
fraction of the maximum possible number of triangles, looks like disjoint copies
of K441 and one small component almost surely.

They show the first of these results by maximizing the number of triangles
going through one edge and showing that Ky, gives every edge the maximum
amount of triangles. This same method works for & = 4 and copies of Ky 4. We
now use this method for k =5 and d = 3.

Proposition 1.3.1. Let n = 10c. Then, the 3-regular graph on n vertices with
the most 5-cycles is ¢ copies of the Petersen graph.

Proof. Consider a 3-regular graph with an edge e containing the maximal num-
ber of 5-cycles going through it, which is 11. Then, there is an edge with
no 5-cycles going through it. Thus, a 3-regular graph with 10 5-cycles going
through every edge would be optimal. The Petersen graph achieves this. O



This method becomes inpractical for larger d and k. Thus, we turn to
homomorphism numbers and injective homomorphism numbers. This allows
us to solve the problem for k& = 5. However, for k& > 6, after applying 2.0.3
we get terms that are not expressable using the spectrum of the graph. For
k = 6, we are able to show an inequality between these non-spectral terms.
However, as k grows, more non-spectral terms appear and more inequalities
between homomorphsim numbers are needed. As a result, it is hard to come
up with a scheme that does this for all k. In fact, in [4], it was shown that
any linear inequality between homomorphism densities, which are defined using
homomorphism numbers, can be shown using a (possibly infinite) number of
Cauchy-Schwarz inequalities. However, deciding whether an inequality is true
is indeterminable.

Thus, we introduce the notion of a non-backtracking, respectively backtrack-
ing, homomorphism number and use non-backtracking spectral theory developed
in [1, 2, 3] to show 1.1.4.

Proposition 1.3.2. Let A®) be a sequence of matrices such that

A = A
A® = A2 —d1
A = AAF) — (d - 1)A*-D E =23 ..
Then, the number of non-backtracking walks of length k from i to j is Al(-f)
Moreover, the number of non-backtracking closed walks of length k of G is

tr(A®). 1]

In [3], it was shown that there is a closed form for the non-backtracking
spectrum in terms of the ordinary spectrum of G.

Consider the directed graph G = (V, E) wehre |V| = 2| E|, where each vertex
is represented by {u,v} C E. Then, we have

B ={(u,v), (x,y) s v = 2,u # y}.

The non-backtracking matrix of G, denoted B, is the adjacency matrix of G,
which is given by,

B [ L ifv=zu#y
(w,v),(zy) — 0, otherwise



Note that each distinct directed closed walk of G corresponds to a unique non-
backtracking walk of G of the same length. Thus, the number of closed non-
backtracking walks of length k of G is equal to tr(B*). Furthermore, we have
the following result.

Proposition 1.3.3. Let G be a d-regular graph. Then, the eigenvalues of B
are
ANiE /A2 —4(d—1
o MEVETET]

where \; are the eigenvalues of A and £1 each have multiplicity m — n, where
m is the number of edges in G.

1.2.2 follows from this.

2 Proof for 5-cycles and 6-cycles

In this section, we find maxg inj(Ck, G). To do this, we first consider maxg(Ck, G).

Lemma 2.0.1. For odd k and n = (c+ 1), the graph with the mazimal number
of closed walks of length k is the graph consisting of ¢ copies of Kqi1.-

Proof. If there is a graph with adjacency matrix A with eigenvalues \; that
solve the optimization problem,

n
maximize E Ak
i=1

n n
subject to > A =0, A} = nd, Amax = d, |Xi| < d.

i=1 i=1
Al = .. = Ayje = d, Ayjeg1 = .- = Ay = —1 is a maximizer. We will show
this in two steps. First, that there must be exactly n/c variables with a value
of d, and then that the rest of the variables must be equal to each other. If
there are less than n/c variables with A; = d, then increasing one of the other
variables to d while decreasing the others equally would result in a greater value.
If there are more than n/c variables equal to d, then we can decrease one of
them and increase the rest of the variables equally and obtain a more optimal
output. Thus, there must be exactly n/c variables equal to d. The rest must
sum to —dn/c. If they are not equal, we can always find some \; > —1 and
Aj < 1. Without loss of generality, |A\;| < |A;|. We can decrease \; — —1 and

increase A; equally. This will be more optimal. Thus, A\ = ... = A,/ = d,
Anjet+1 = - = Ay = —1 is a maximizer. The graph consisting of ¢ copies of
K441 has this spectrum and is thus optimal. O

For the other optimization problems, a similar argument can be used to find
the solutions. For even k we consider the same optimization problem. However,
in this case, we want to make negative eigenvalues large. So, we get a different
optimal graph.



Lemma 2.0.2. For even k and n = 2cd the graph with the mazimal number of
closed walks of length k is the graph consisting of ¢ copies of K 4.

Proof. The problem is equivalent to the optimization problem in Lemma 5.
)\1 = ... = )‘n/c = d>)‘n/c+1 = ... = )‘271/0 = _d7A2n/c+l = ... = >\n =0is a
maximizer since it is optimal to have as many +d values as possible. The second
constraint determines how many of these are possible. The graph with ¢ copies
of K44 has this spectrum. O

It is remarkable that there are graphs whose spectra are the solutions to
these optimization problems, which is not a priori the case. This happens for
every optimization problem we consider.

The follwoing equation relates hom(H, G) and inj(H, G) using the Mdbius
inverse of the partition lattice. The next lemma is equation 5.18 from [6].

Lemma 2.0.3.
inj(H,G) = Zuphom(H/P, G),
P

where P ranges over all partitions of V(F') and

o = (=)@ T] (8] - 1)

Sep
where |P| is the number of classes in the partition and S are the classes in P.

We can also get homomorphism numbers from injective homomorphsims
numbers.

Lemma 2.0.4.
hom(H,G) = > _inj(H/P,G).
P
It is important to note that some of the resulting quotient graphs will have
self loops. Since G is simple, these terms vanish. We will use these formulas
to find an eigenvalue optimization problem that is equivalent to finding the
d-regular graph with the most k-cycles.

For the rest of this paper, when the context is clear, we will write hom(H) =
hom(H, G).

2.1 Main result for 5-cycles

Proposition 2.1.1. For d > 3 and n = ¢(d + 1), the d-regular graph on n
vertices with the most 5-cycles is ¢ copies of Kqy1. For d = 3 and n = 10c,
then the optimal graph is ¢ copies of the Petersen graph.

Proof. By 2.0.3, we calculate
inj(Cs, G) = hom(C5s) — 5hom(K3 + e) 4+ 5hom(K3),

where the “ +¢” means with an antenna.



Then, since G is d-regular, we have hom(K3 + ¢) = dhom(K3). Thus, we
consider the optimization problem,

maximize Z A+ (5 — 5d)A\?
=1
subject to Y A =0, A7 = nd, Amax = d, |\i| < d..

=1 i=1

For d > 3, this is solved when A\; = ... = A\, = d and Acy1,..., A, = —1. The
graph consisting of ¢ copies of K411 has this spectrum. For d = 3, the solution
is the spectrum of the Petersen graph, which gives us 1.3.1. O

2.2 Main result for 6-cycles

This method also works for £ = 6. When using 2.0.3, we notice that quotients
that are trees give constant terms for any d-regular G. Hence, we can omit them
from any maximization problem. We compute

n

inj(Ce, G) = |3 _ A + (6 — 6d)X} — 6A7 | —3hom(B, G) + 9hom(Ky \ e,G) +C,

i=1

(1)

for some C' € Z where B is the ‘bowtie’ graph. We note that hom(B) and

hom (K4 \ e) cannot be expressed using eigenvalues. Thus, we make use of the
following inequality.

Lemma 2.2.1. For any G,
hom(B) > 4hom(Ky \ e).

Proof.
hom(B) = inj(B) + 4hom(K, \ e) + 2hom(K3).
O

Proposition 2.2.2 (6-cycles). Let d > 5 and n = 2cd. The d-regular graph on
n vertices with the most 6-cycles is ¢ copies of Kq 4.

Proof. Since hom(B,G) > 4hom(K, \ e, G), we have that the term outside of
the sum in (1) is non-positive and thus maximized when it is zero. Note that if
G is bipartite, then this value is zero. The spectral part of 1 is maximized when
Al =...= A =d,Aet1 = ... = Aoc = —d, Aaet+1 = ... = A\, = 0. Thus the upper
bound given by

max f(A\)—3hom (B, G)+9hom(K,\e, G) < max (f(A))+max (—3hom(B, G) 4+ 9hom(K, \ e,G)),

where f(A) is the spectral term, is attained. O



3 Non-backtracking Homomorphisms

We can count the number of closed non-backtracking walks of length k of G
with the following results from [1, 2, 3].

Proposition 3.0.1. Let A%) be a sequence of matrices such that

A = A
A® = A2 —d1
AGHD) Z AAK) (g 1)AG-D k=23
Then, the number of non-backtracking walks of length k from i to j is AE;-C).
Moreover, the number of non-backtracking closed walks of length k of G is

tr(A®). 1]

In [3], it was shown that there is a closed form for the non-backtracking
spectrum in terms of the ordinary spectrum of G.

Consider the directed graph G = (V, E) wehre |V| = 2| E|, where each vertex
is represented by {u,v} C E. Then, we have

B ={(u,v), (,y) s v = 2,u # y}.

The non-backtracking matrix of G, denoted B, is the adjacency matrix of G,
which is given by,

B [ ifv=au#y
(w,v),(zy) — 0, otherwise

Note that each distinct directed closed walk of G corresponds to a unique non-
backtracking walk of G of the same length. Thus, the number of closed non-
backtracking walks of length & of G is equal to tr(B*). Furthermore, we have
the following result.

Proposition 3.0.2. Let G be a d-regular graph. Then, the eigenvalues of B
are
Ni £/ —4(d—1)
+1, 5 ;

where \; are the eigenvalues of A and £1 each have multiplicity m — n, where
m is the number of edges in G. [3]

In general the problem becomes:

d <)\i+\/)\3—4(d—1)>k+ ()\i— «/A§—4(d—1)>k
2

2

i=1

subject to Z)‘i = O,ZA? = nd, Amax = d, |\i| < d.

i=1 i=1



Although the eigenvalues of B may be complex, the objective funtion above is
always real as zF 4+ 2% = 2F + (2F) = 2Re(2").
Using the binomial theorem, we compute:

Z": </\i+\/)\§4(d1)>k+ ()\ \//\124(d1)>k
2

2

i=1

:itf/zj <§Z>4<A2J)k‘2@§—42(j—1))

Similar to before, for odd k, we want small negative eigenvalues and large
positive ones

Theorem 3.0.3. For odd k and n = ¢(d+ 1), the d-regular graph on n vertices
with the most non-backtracking closed walks of length k is ¢ copies of Kgy1.

Proof. The solution of the optimization problem is the spectrum for this graph
as the derivative of the objective is much larger near d than it is near —1 or any
other point. O

Notice that if k is even, to maximize the objective, we need to make the |,
as large as possible. Thus,

Theorem 3.0.4. For even k and n = 2cd, the d-reqular graph on n vertices
with the most non-backtracking closed walks of length k is c copies of Kq 4.

Proof. Ay = ... = Ae = d, Aeg1, -+ = A2ey Aoet1s - A = 0 is the solution to the
optimization problem above by reasoning similar to Lemmas 5 and 6. We can
see that the derivative of the objective is much larger near —d and d than it is
at any other point. O

3.1 Maximizing Backtracking

We now find maxg bac(C,G). The number of backtracking walks of length
k is the sum of those that backtrack once, those that backtrack twice, thrice,
and so on. Denote bac;, 4,....i,(Ck, G) as the number of backtracking homomor-
phisms that backtrack i = Zﬁ i; times where i; denotes the length of the jth
backtracking streak.

In general we have to compute

n

bac(C’k)ZZ Z bac;, 4s.....i,(Ck)

=1 d14...1¢=1



n
k—i
>\j
1

i=1414...F+ig=1 =1 d14...Fip=1

:Z Z hom(Hil,“.,iz):Z Z d*

where H;, ., is Cr—; with (# odd length streaks in i1, ig, ..., 7¢) = a antennas.
This is maximized at the desired spectrum because every coefficient is posi-
tive. Thus, we have the following result.

Proposition 3.1.1. The d-reqular graph on n = c¢(d + 1) vertices with the
most closed backtracking walks of odd length k is ¢ copies of Kqq1. Similarly, if
n = 2cd and k is even, then the optimal graph is c copies of Kqq

Proof. Using the above equation as the objective function with the same con-
straints as before gives the spectra of K411, or K, g respectively, as the opti-
mizer. 0
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