The Schwartz-Christoffel Formula

Arturo Ortiz San Miguel & James Leroux

Brown University

December 9, 2021

Where We Left Off

Riemann Mapping Theorem: Given $W \subset C$, W open, simply connected, and D is the unit disk, there exists a biholomorphism

$$F:W\rightarrow D.$$

Where We Left Off

Riemann Mapping Theorem: Given $W \subset C$, W open, simply connected, and D is the unit disk, there exists a biholomorphism

$$F:W\to D.$$

However (BIG $\overline{\text{CAVEAT}}$), although F exists, it is not always easy to write.

Where We Left Off

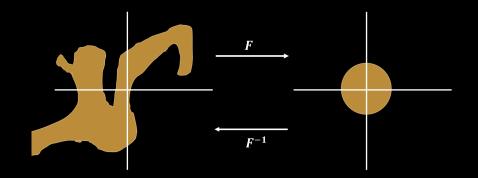
Riemann Mapping Theorem: Given $W \subset C$, W open, simply connected, and D is the unit disk, there exists a biholomorphism

$$F:W\rightarrow D.$$

However (BIG CAVEAT), although F exists, it is not always easy to write.

Wah, wah, wah.....

A Brief Illustration of Our Problem



https://memegenerator.net/instance/71691819/sad-kitty25-the-look-you-give-someone-when-you-want-something

Scwharz-Christoffel Formula

However, we do know how to write it when W is a polygon!

Scwharz-Christoffel Formula

However, we do know how to write it when W is a polygon! The Schwarz Christoffel Formula is a formula for how to do this.

Scwharz-Christoffel Formula

However, we do know how to write it when W is a polygon!

The Schwarz Christoffel Formula is a formula for how to do this.

https://knowyourmeme.com/photos/71862-happy-cat

More Background

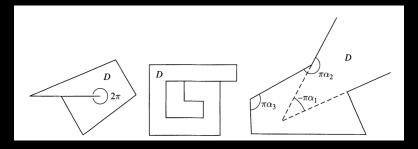
Definition: A **Polygonal Domain** is a region that made up of line segments connected at points called **vertices**.

More Background

Definition: A **Polygonal Domain** is a region that made up of line segments connected at points called **vertices**. The segments may overlap, have any angle, and ∞ can be a vertex.

More Background

Definition: A **Polygonal Domain** is a region that made up of line segments connected at points called **vertices**. The segments may overlap, have any angle, and ∞ can be a vertex. Examples:



Let g be a conformal mapping from the upper half plane Π^+ onto a polygonal domain of n sides which has interior angles with measures $\alpha_1\pi,...,\alpha_n\pi$ and let $a_1,a_2,...,a_n$ be the points on the real axis mapped onto the vertices of the polygon.

Let g be a conformal mapping from the upper half plane Π^+ onto a polygonal domain of n sides which has interior angles with measures $\alpha_1\pi,...,\alpha_n\pi$ and let $a_1,a_2,...,a_n$ be the points on the real axis mapped onto the vertices of the polygon. Then, fixing a point $w_0 \in \Pi^+$.

Let g be a conformal mapping from the upper half plane Π^+ onto a polygonal domain of n sides which has interior angles with measures $\alpha_1\pi,...,\alpha_n\pi$ and let $a_1,a_2,...,a_n$ be the points on the real axis mapped onto the vertices of the polygon. Then, fixing a point $w_0 \in \Pi^+$, there exist complex constants A, B such that

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

Let g be a conformal mapping from the upper half plane Π^+ onto a polygonal domain of n sides which has interior angles with measures $\alpha_1\pi,...,\alpha_n\pi$ and let $a_1,a_2,...,a_n$ be the points on the real axis mapped onto the vertices of the polygon. Then, fixing a point $w_0 \in \Pi^+$, there exist complex constants A, B such that

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

Equivalently,

$$g'(w) = A(w - a_1)^{\alpha_1 - 1}(z - a_2)^{\alpha_2 - 1}...(z - a_n)^{\alpha_n - 1}$$

Let g be a conformal mapping from the upper half plane Π^+ onto a polygonal domain of n sides which has interior angles with measures $\alpha_1\pi,...,\alpha_n\pi$ and let $a_1,a_2,...,a_n$ be the points on the real axis mapped onto the vertices of the polygon. Then, fixing a point $w_0 \in \Pi^+$, there exist complex constants A, B such that

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

Equivalently,

$$g'(w) = A(w - a_1)^{\alpha_1 - 1}(z - a_2)^{\alpha_2 - 1}...(z - a_n)^{\alpha_n - 1}$$

(taken from Bruna, Cufi, p. 361)

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

• $\alpha_i \pi$ are each interior angle of the polygon.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i\pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations. This is called the Shwarz-Christoffel Parameter Problem.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations. This is called the Shwarz-Christoffel Parameter Problem.
- These are generally very complicated for irregular polygons.

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations. This is called the Shwarz-Christoffel Parameter Problem.
- These are generally very complicated for irregular polygons.
- Also kinda complicated for normal ones.

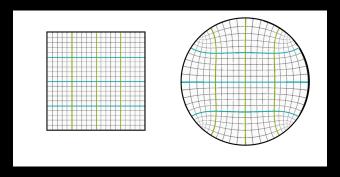
$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations. This is called the Shwarz-Christoffel Parameter Problem.
- These are generally very complicated for irregular polygons.
- Also kinda complicated for normal ones.
- Once found, one can solve for A, B

$$g(w) = A \int_{w_0}^{w} (z - a_1)^{\alpha_1 - 1} ... (z - a_n)^{\alpha_n - 1} dz + B$$

- $\alpha_i \pi$ are each interior angle of the polygon.
- The real axis maps to the boundary of the polygon.
- a_i is the point in the real axis that the maps to the i^{th} vertex.
- For any polygon with n vertices one can choose a_1, a_2, a_n . The remaining n-3 vertices can be found by solving a system of equations. This is called the Shwarz-Christoffel Parameter Problem.
- These are generally very complicated for irregular polygons.
- Also kinda complicated for normal ones.
- Once found, one can solve for A, B

Conformal

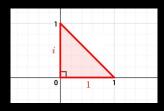


Taken from Fong's The Conformal Hyperbolic Square and Its IIk

Example with Triangle

Consider the triangle with vertices 0, 1, i with interior angles

 $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}.$



From lecture, we have a biholomorphism from the half plane to the unit disk. So, finding a biholomorphism from the half plane to the triangle is sufficient.

Example with Triangle

Let g(z) map the upper half plane to our polygon with g(0) = 0, g(1) = 1, and g(a) = i for some a > 1. Then, by the Schwartz-Christoffel Formula

$$g(z) = A \int_0^z t^{\frac{1}{2}-1} (1-t)^{\frac{1}{4}-1} (a-t)^{\frac{1}{4}-1} dt$$

is a bijection.

Example with Triangle

Let g(z) map the upper half plane to our polygon with g(0) = 0, g(1) = 1, and g(a) = i for some a > 1. Then, by the Schwartz-Christoffel Formula

$$g(z) = A \int_0^z t^{\frac{1}{2}-1} (1-t)^{\frac{1}{4}-1} (a-t)^{\frac{1}{4}-1} dt$$

is a bijection.

A can be found by using the fact that g(1) = 1.

(Taken from Gamelin, including wording) Let D be the domain obtained by cutting a vertical slit in the upper half plane from 0 to *ia* in the imaginary axis.

(Taken from Gamelin, including wording) Let D be the domain obtained by cutting a vertical slit in the upper half plane from 0 to *ia* in the imaginary axis.

Let w=g(z) be the Scwartz-Christoffel map of the upper half-plane onto D that sends 0 to ia and ± 1 to the two vertices at 0.This determines g(z) uniquely, since we have specified 3 real parameters.

(Taken from Gamelin, including wording) Let D be the domain obtained by cutting a vertical slit in the upper half plane from 0 to *ia* in the imaginary axis.

Let w=g(z) be the Scwartz-Christoffel map of the upper half-plane onto D that sends 0 to ia and ± 1 to the two vertices at 0.This determines g(z) uniquely, since we have specified 3 real parameters.

In the Schwartz-Christoffel Formula, the consecutive points are $a_1=-1$ with angle $\pi/2$, $a_2=0$ with angle 2π , and $a_3=+1$ with angle $\pi/2$.

(Taken from Gamelin, including wording) Let D be the domain obtained by cutting a vertical slit in the upper half plane from 0 to *ia* in the imaginary axis.

Let w=g(z) be the Scwartz-Christoffel map of the upper half-plane onto D that sends 0 to ia and ± 1 to the two vertices at 0.This determines g(z) uniquely, since we have specified 3 real parameters.

In the Schwartz-Christoffel Formula, the consecutive points are $a_1=-1$ with angle $\pi/2$, $a_2=0$ with angle 2π , and $a_3=+1$ with angle $\pi/2$.

So, the formula (in the derivative version is):

$$g'(z) = A(z-1)^{\frac{-1}{2}}z(z+1)^{\frac{-1}{2}}$$

(Taken from Gamelin, including wording) Let D be the domain obtained by cutting a vertical slit in the upper half plane from 0 to ia in the imaginary axis.

Let w=g(z) be the Scwartz-Christoffel map of the upper half-plane onto D that sends 0 to ia and ± 1 to the two vertices at 0.This determines g(z) uniquely, since we have specified 3 real parameters.

In the Schwartz-Christoffel Formula, the consecutive points are $a_1=-1$ with angle $\pi/2$, $a_2=0$ with angle 2π , and $a_3=+1$ with angle $\pi/2$.

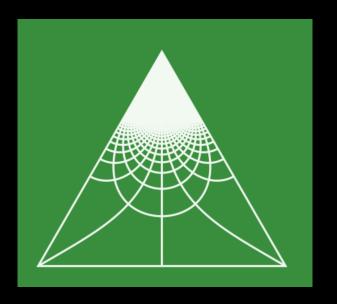
So, the formula (in the derivative version is):

$$g'(z) = A(z-1)^{\frac{-1}{2}}z(z+1)^{\frac{-1}{2}}$$

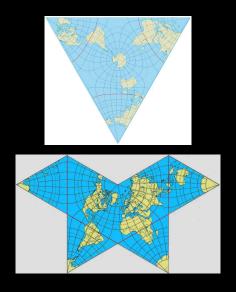
$$=\frac{A_z}{\sqrt{z^2-1}}$$



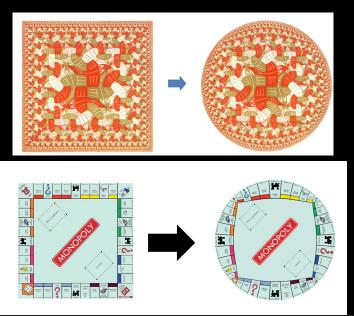
Conformal



A Cool Application



A Cool Application



Arturo Ortiz San Miguel & James Leroux

The Schwartz-Christoffel Formula

Sources

Bruna, Cufí, J., Monreal, I. (2013). Complex analysis. European Mathematical Society.

Gamelin, Gehring, F. W., Halmos, P. R. (2013). Complex Analysis. Springer.

Shonwiler, Clayton. "Wolfram Community." Christmas Tree, Wolfram, https://community.wolfram.com/groups/-

/m/t/1844404?sortMsg=Replies.

"Projections Based on the Dixon Elliptic Functions." Elliptic Curve Cartography, http://www.quadibloc.com/maps/mcf0705.htm.