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Russell’s Paradox and Domains

Russell's Paradox considers R, the set of all sets that do not contain themselves. A
contradiction arises when we ask whether R contains itself. If R & R then R contains itself
meaning that R ¢ R, by its definition. On the other hand, if R € R then R does not contain itself
meaning that it must be in R, by the definition of R. Thus, R € R. Either way, we get a
contradiction. Modern mathematics uses the Zermelo-Fraenkel axioms with the axiom of choice
(ZFC) to avoid this paradox. However, this paradox deserves attention because it may be solved
and free mathematicians, logicians, and philosophers from the restrictions they have imposed on
themselves to avoid Russell’s Paradox.

Russell’s Paradox is resolved by arguing that the function F(x), which returns true if x
contains itself and is false otherwise, does not have R in its domain. Thus, the set R is invalid.
This paper discusses how this solution solves many other paradoxes of self reference including
Grelling’s Paradox and the Liar Paradox while still allowing non-problematic forms of self
reference. Additionally, carefully explained examples are used to explain the details of valid and
invalid forms of self reference. These arguments lead to the introduction of an axiom schema that
does not sacrifice any of ZFC’s benefits and allows for self reference and self containment.

First, we closely outline how functions and sets behave and depend on each other. Sets
are collections of objects. A useful way to describe a set is by using a binary function ¢. Objects

that return frue when they are inputted into ¢ are in the set. This is the essence of the axiom
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schema of separation. Next, the domain of a function is the set of all objects that can be validly
inputted into the function. Thus, a set is defined by a function but a function relies on a set for its
definition. Although this appears circular, it is not the case. One can define sets without using
functions by simply listing the elements in the set. We can use these sets to make functions and
then define more sophisticated sets. Now, we describe how this way of defining sets can be
described in the language of the axiom schema of separation.

The set S = {1,2} can be alternatively and equivalently defined using the function ¢(x)
that returns true if and only if x equals 1 or 2. Similar functions exist for all sets that are defined
by exhaustively listing its elements. For all valid sets, one can use its associated ¢ function to
determine whether any object is in that set. Conversely, every binary function has an associated
set that contains all of the objects that return true when inputted into said function.

Many people would object that absolute generality or unrestricted quantification is
incorrect. That is, that functions cannot have everything as a domain. I claim that many functions
have all objects in their domains. Now, I will give three reasons why some cases of absolute
generality are possible. First, claiming that absolute generality is not possible immediately causes
a contradiction.

Suppose, unrestricted quantification is not the case. Then, one can not quantify over
absolutely everything. The previous sentence is a quantitative statement about everything, which
is a contradiction.

Second, many functions such as O(x) = @ are input independent. Thus, anything can be
inputted into such a function. Lastly, mathematicians use functions with unrestricted domains

without issue.
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Other functions do not have everything in their domains. For example, the function £(x)
that returns true if x is even only makes sense for integers. Thus, £’s domain is the set of
integers. However we can define a function ¢ such that ¢(y) = E(y) for all y in £’s domain. This
function is ¢@(x), which returns true if x is a number that has the property of being even.
However, some functions cannot be modified to contain a domain with all objects. Objects who
rely on a function ¢ cannot be in the domain of @(x) if the property of x checked by ¢ relies on ¢.

The contradictions that arise from Russell’s Paradox stem from incorrectly claiming that
R’s associated ¢ function, which returns true when x does not contain itself, has everything in its
domain. I claim that R is not in the domain of ¢ and thus it makes no sense to ask whether R
contains itself. Moreover, R is an invalid set because we cannot use its associated ¢ function on
itself. Now we describe a few examples to help describe this issue.

First, we revisit the function E(x). Clearly E(8) = ¢(8) = true, E(7) = ¢(7) = false, and
E(Aphrodite) is invalid because Aphrodite is not in the domain of E£. Similarly, £(being even) is
invalid. Here self reference is obviously nonsensical. Also, note that ¢(Aphrodite) = ¢(is even) =
false.

Next, consider the function L(w), whose domain is words and returns true when w has 15
letters. The associated ¢ function for the set of words that return true when inputted to L is @(x),
which returns true if x is a word and has 15 letters. We see that @(bat) = L(bat) = false,
¢(objectivenesses) = L(objectivenesses) = true, and L(324) is invalid because 324 is not in the
domain of L. However, ¢(324) = false. Now, we closely look at ¢(fifthteen-lettered) and
L(fifteen-lettered).

All words have a property that describes the number of letters that word has. For

example, bat has 3, objectivenesses has 15, and fifthteen-lettered also has 15. Thus,
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o(fifthteen-lettered) = L(fifthteen-lettered) = true. In words, ‘fifthteen-lettered’ is a
fifthteen-lettered word. Here, self reference is valid because the number of letters in
‘fifthteen-lettered’ is independent of the definition or other properties of ‘fifteen-lettered.’

Now, we look at H(x) whose domain is all adjectives and returns true if x is heterological.
We define ¢ as the function that returns #rue for all objects that map to rue when inputted into H.
We see that @(blue) = H(blue) = true, ¢(fifthteen-lettered) = H(fifteen-lettered) = false, H(32) 1is
invalid because 32 is not an adjective, but ¢(32) = false. Grelling's Paradox arises when one is
asked to evaluate H(heterological). However, H(heterological) is invalid because H(x) checks
whether x has the property of being non-selfdescribing. However, heterological, by definition,
means non-selfdescribing. Thus, the property of ‘heterological’ that is checked by H depends on
H and ¢. Thus, it is circular. For the same reason, @(heterological) is invalid. This kind of self
reference is incorrect. Therefore, we must adjust the domain of H to be all adjectives whose
definition is independent of the concept of non-self description. That is, the domain of H is all
adjectives that are independent of ¢. Similarly, the domain of ¢ is all objects that are independent
of ¢.

Next, we look at the Liar Paradox. It concerns the statement, “This sentence is false,” and
asking whether it is true or not. Let L be the statement and 7(x) be a function that returns true if x
is a true statement. Following the results from before, it is clear that the domain of 7 is all
statements whose content is independent of ¢ where ¢@(x) is the associated function of the set of
objects that return t7ue when inputted to 7. It is crucial to note that 7 and ¢ are different
functions with different domains.

Now, we evaluate 7(x) and @(x) for some values. Clearly, 7(2+2=4) = ¢(2+2=4) = true

and 7(1+1=5) = o(1+1 = 5) = false. Then, @(apple) = false, but T(apple) is invalid as ‘apple’ is
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not a complete statement and thus is not in the domain of 7. However, T(L) and ¢(L) are both
invalid as L is not in the domain of 7 nor ¢ because L is a statement that depends on ¢. Further
analysis on the Liar Paradox is given further below when discussing the validity of definitions.

Finally, we examine Russell's Paradox. Let F be the same as the second paragraph and
define ¢ as before. We can see that ¢({8,9}) = F({8,9}) = true, o({x : x=x}) = F({x : x=Xx}) =
false, F(cats) is invalid since ‘cats’ is not a set and thus not in the domain of F. However, ¢(cats)
= false. Evaluating F(R) is Russell’s Paradox.. F(x) checks the property of non self containment
and so does ¢. By definition, R is the set of all objects that have the property of non self
containment. Thus, the property of R that is checked by F relies on ¢. Thus, F(R) and ¢(R) are
invalid.

One could argue that the definition of x is not the property checked by F(x). Instead, F
checks whether any element of x is equal to x. Then, F(R) does not depend on the definition of R
but on its elements. Although this argument holds, checking whether an element of x is equal to x
depends on all the properties of x because to check for equality between two objects, one must
look at every property of the objects. Clearly, the definition of x is a property of x. Thus, F(R) is
invalid. It follows that R is an invalid set because all valid sets have ¢ functions that can take any
object as input and ¢(R) is invalid.

These four examples illustrate how self reference is valid when the property of an object
that is checked by a function does not rely on the very function. Sets that are self referential are
forbidden in ZFC. However, we just proved that some of them are valid. For example the set of
all sets, S, includes itself. The property checked by its ¢ function is the property of being a set.
The property of S being a set does not rely on ¢ in the same way that the property of R not

containing itself relies on its associated ¢ function. The difference is that R’s property and ¢



Ortiz San Miguel 6

relation is circular while S’s is not. We can verify that S has the property of being a set directly
from its definition. That is, S asserts that it has the property of being a set. Thus, we know that
¢(S) = true. On the other hand, R’s definition points to its ¢ function without clearly stating what
¢@(R) evaluates to. Thus, @(R) is circular and invalid. This shows that self reference is only valid
when an object’s property checked by ¢ is independent of ¢ or if the object’s definition validly
states the value of ¢(object). By ‘validly states,” I mean that the statement does not cause a
contradiction.

An example of a definition that invalidly states its ¢ value is the Liar Paradox. Clearly it
states that ¢(L) = false. However, the definition of L is invalid because statements implicitly
claim that they are true. Thus L’s definition claims ¢(L) = true and ¢(L) = false. This is a
contradiction, thus L is an invalid statement. Hence, self reference and containment are possible
in consistent systems.

Since self reference and self containment are valid, we should modify contemporary ZFC
axioms to allow for such sets. I propose adding a new axiom schema. In mathematical notation,
Y o:D— {0,1} dA:A={x:0x)=1},D={x:(Px) L o) V (D(x) 2 ¢(x))} where P(x) is
the property of x checked by ¢ and D(x) is the definition of x. In English words, given a binary
function @, there exists a set 4 such that the elements of 4 are all the objects that return true
when inputted into ¢. The domain of ¢ is all objects whose property checked by ¢ is independent
of ¢ and all objects whose definition validly includes its value of @(x). It is important to note that
this is not the same as the axiom schema of separation since it does not deal with subsets.

This schema gives mathematicians, logicians, and philosophers the liberty to use valid
self containing sets and self reference, which is prohibited by the ZFC axioms. Additionally, this

new schema only requires abandoning the axiom of regularity, which only exists to avoid self
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containment. Thus, no significant sacrifices are made by accepting this schema. Additionally,
this schema addresses the problems that arise from Russell’s Paradox and other paradoxes of self

reference and carefully explains when self reference can be used.
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