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I. Introduction

The Laplace Transform is an integral transform that, much like the Fourier Transform, is
a very powerful tool mathematicians use to solve differential equations. However, it can be more
general than the Fourier Transform, as it allows complex numbers to have a non-zero real value
and includes all of the initial conditions during the transformation. Consequently, the Laplace
Transform is applicable to many fields of science. It would be of great benefit to explore the
definitions, properties, and applications of the Laplace transform, as well as its use in solving

partial differential equations and a brief history of its purpose and creation.

A History of the Laplace Transform

Since its inception in the late 1700s, the Laplace Transform has been instrumental in
solving certain classes of partial differential equations. In recent years, it has become a powerful
tool in many applications of differential equations, allowing solutions to systems which would
otherwise be very difficult to solve. First invented by Pierre-Simon Laplace, and later developed
by Olivier Heaviside near the turn of the 20th century, the Laplace transform is commonly used
in applications relating to electrical circuits or similar fields, and is a staple of electrical
engineering (Britannica - Laplace transform). The legendary mathematician Johannes Euler had
begun seeking solutions of the type provided by the Laplace Transform to certain differential

equations as early as 1744 in De Construction Aequationum, and his work was finished by the



also legendary Laplace decades later. Euler’s intended purpose was to find solutions to equations

of the form:

(Deakin 346-347)

This eventually led to the transformation used to solve such equations and a myriad of
technological advances in the fields of mathematics and electromagnetism. To see how such an
equation could be solved, it would be beneficial to examine the definition and practical

application of the Laplace Transform.

II. Background and Using the Laplace Transform

Defining and Using the Laplace Transform

Definition 2.1
The Laplace Transform operator applied to a piecewise continuous function u is written

as (Lu)(s) or U(s), and is defined to be the following integral over the time domain:

(Lu)(s) = /’JU u(t)e s'dt
J 10

(Logan 106)



This transform converts a function in the time domain into a function in the transform domain,
where u and s are known as transform variables.

Further Explanation of the Transform:

Much how it is true that any wave can be expressed as a sum of sine functions, every wave can

be expressed as a sum of exponential functions of the form

(C _|_dl-)ea+bi

Essentially, The Laplace Transform will tell us how much of each function we have to add.
Now, let every function we wish to add be a point in a plane of functions. Then, let the

distance between the functions we want to add, ds — 0. Then, we can write the sum as
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(Khutoryansky)

Later, we will define this equation as the Inverse Fourier Transform. Solving for the Laplace
Transform requires knowledge of complex variables (Logan). However, what we have done is
enough to give one an idea of where the Laplace Transform comes from.

Note: The Fourier Transform is very similar but with sine functions instead of exponentials
where the real value of the complex constant is zero. Thus, the Laplace Transform is more

general.



Properties of the Laplace Transform
Property 2.1.
The laplace transform is linear, as integration is linear on integrable functions. As such, the

following equation of linearity holds:
L(cuy + ug) = cLuy + Lug

(Logan 106)
Property 2.2.
Partial differential equations in time and space have a useful property: their spatial
derivatives can be taken outside of the Laplace Transform. This allows us to take the spatial

derivative separately and solve the result as an ordinary differential equation.
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Property 2.3.

The aspect of the Laplace Transform that makes it a very powerful tool is its ability to
convert derivatives of a function in the time domain to simple multiplication operations in the
transform domain. Two examples from Applied Partial Differential Equations Third Edition by

J. David Logan on page 107 are given by:

(Lu')(s) = sU(s) — u(0)

(Lu")(s) = s2U(s) — su(0) — u'(0)

It may be useful to note that there also exists a generalized form of this result, which is easily

shown by mathematical induction and integration by parts:



ﬁ(-u{”](f)) =s"U(s) — s lu(0) — S”_Q-u'(ﬂ) ——— u[”_”{[})

(Dyke 15)

This can be written more concisely as:

n

L(u™ (f}) = 5" Ts)— Z s" D)
g=1

This provides the ability to convert a partial differential equation into an ordinary differential
equation by eliminating its derivatives. The resulting differential equation can then be solved by
conventional means, but will still exist in the transform domain. As such, a conversion formula
to return the equation back to the time domain is necessary. This operator is given by the
following formula:
Definition 2.2

The Inverse Laplace Transform of a function U(s) is

1 a-ie
u(t) = (C'U)(t) / Ul(s)etds
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(Logan 107)
The inversion of the Laplace Transform can be done after solving the transformed equation, and
will give the desired expression in the time domain. To illustrate the power of the Laplace
Transform, we shall observe the following example of its use on an ordinary differential

equation:



u” +u"=0,t>0
w'(0) =0, 2/(0) =0, u(d) =1

Llu™ +4") =0

s3U (s) — s2u(0) — su'(0) — v”'(0) + s*U(s) — su(0) — ' (0) =0
SU(s)+s2U(s) — s> —s=0
s+ 1)U(s)=s2+s
s(s+1) 1

s
By Computed Table Values:

u(t) = L7 (U(s)) = £ (1) 4

There are many tables of common inverse Laplace Transforms, and we have used the table from
Applied Partial Differential Equations on page 114 to solve this example. The solution to this
ordinary differential equation is trivial, but provides an example of how Laplace Transforms are
used in solving differential equations. The Laplace transform can also be very useful in solving
linear partial differential equations with constant coefficients where the coefficients may be
complex. Intuition on how the Laplace Transform is used to solve partial differential equations is

made clear by the following diagram:



Laplace Transform

Conditions ODE

Inverse Laplace
Transform

Solution of PDE < | Solve ODE

Note that this is the same procedure as solving partial differential equations by using the Fourier

transform. This process is very important in a variety of fields, but perhaps equally important is a

theorem which forms another useful tool related to the Laplace Transform.

Theorem 2.1. (The Convolution Theorem)

The Convolution Theorem provides a method by which two functions multiplied together in the
transform domain can be converted to the convolution of their inverse Laplace Transforms, or
vice versa. This is particularly useful when converting a solved system in the transform domain
back into the time domain when that system consists of two multiplied functions of the transform
variable “s”. This property is exemplified by the following system for solving differential

equations with the Convolution Theorem:



(Logan 108)

Since obtaining the product of two functions as the result of a Laplace Transform is not
uncommon, it is useful to note that such a result can then be readily converted to a convolution in

the time domain. To provide greater insight into the use of this theorem, we have constructed an

example of its use:

w4 =0,7u(0) =0,4(0) =1
Llu +u")y=10

sU(s) — u(0) + s2U(s) — su(0) —u'(0) =0
s(s+1)U(s) =1

1 1 1
Us) = —— = —
s(s+1) s s+1
Let Uy = £ and Uy = —
E_l(é) =1 and E‘l(s—il) = et



By Convolution Theorem:

ﬁ({frl o E"TQ) e (Ul #* U.Q) [zfj

u(t) = /I ug(t — 7)uo(7)dT
0

i
il) = / 1-e "dt
J0O

t
u(t) = —e™*

0
u(t) = —e " +1

III. Applications

Common Applications of the Laplace Transform

The Laplace Transform has a wide range of applications. We will be focusing on the
most common one, which is electrical engineering. Additionally, we will explore some
unexpected applications, such as image recognition and neural networks.

The Laplace Transform is critical for electrical engineering in the subfield of signal
processing. This is because the Laplace Transform takes in a time domain function and outputs a
frequency domain function. For example, we use devices like our cell phones everyday that take
in sound waves, turn them into electrical signals, and convert them back into the original sound.
This process involves changing from time domain functions to frequency domain functions,
which is exactly what the Laplace Transform does. The following image shows a sound

frequency input and a signal output that was calculated using the Laplace Transform.
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(Cocagne 8)

Thus, the Laplace Transform can be used in any kind of signal processing. However, this is not
its only application.

Another application of the Laplace Transform that is not commonly known is in image
recognition. The Laplace Transform can be used to detect the edges of objects in images. In
some cases, it is more effective than other image detection methods because it does not require
cutting the edges before applying the transform. For example, Anna Gorbenko and Vladmir

Popov used the Laplace Transform to create an algorithm that would detect train tracks.

10



(Gorbenko 2416)
Another unexpected application can be found in economics. It can be used to calculate
the present discounted value of an asset based on cash flow that increases by a continuous
compounding interest. This is very useful for investors who want to buy assets when there is the

highest discount possible (Ananda 360).

IV. Conclusion

The Laplace Transform is instrumental in many areas of mathematics, and readily
provides solutions to otherwise complex differential equations, both partial and ordinary. This
process is facilitated by the definitions and properties shown in section II. The history of the
Laplace Transform spans over 200 years, and continues to grow today, as more uses of this
mathematical tool are discovered in fields ranging from electrical engineering to economics. As
such, the importance of understanding the Laplace Transform and its functionality relating to

differential equations is perhaps greater than ever before.
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